资源类型

期刊论文 442

会议视频 11

年份

2023 20

2022 36

2021 32

2020 34

2019 17

2018 11

2017 21

2016 21

2015 26

2014 16

2013 11

2012 28

2011 20

2010 24

2009 24

2008 36

2007 29

2006 8

2005 5

2004 5

展开 ︾

关键词

动力特性 5

临床特征 3

振动 3

2035 2

中国 2

中国特色 2

农业科学 2

增材制造 2

振动信号 2

有限元 2

海上风电场 2

经济 2

AR模型 1

Al@AP/PVDF纳米复合材料 1

Anderson 模型 1

CMAC神经网络 1

Casimir力 1

DX桩 1

FE-SEA混合法 1

展开 ︾

检索范围:

排序: 展示方式:

Vibration characteristics and machining performance of a novel perforated ultrasonic vibration platform

《机械工程前沿(英文)》 2023年 第18卷 第1期 doi: 10.1007/s11465-022-0730-2

摘要: Ultrasonic vibration-assisted grinding (UVAG) is an advanced hybrid process for the precision machining of difficult-to-cut materials. The resonator is a critical part of the UVAG system. Its performance considerably influences the vibration amplitude and resonant frequency. In this work, a novel perforated ultrasonic vibration platform resonator was developed for UVAG. The holes were evenly arranged at the top and side surfaces of the vibration platform to improve the vibration characteristics. A modified apparent elasticity method (AEM) was proposed to reveal the influence of holes on the vibration mode. The performance of the vibration platform was evaluated by the vibration tests and UVAG experiments of particulate-reinforced titanium matrix composites. Results indicate that the reasonable distribution of holes helps improve the resonant frequency and vibration mode. The modified AEM, the finite element method, and the vibration tests show a high degree of consistency for developing the perforated ultrasonic vibration platform with a maximum frequency error of 3%. The employment of ultrasonic vibration reduces the grinding force by 36% at most, thereby decreasing the machined surface defects, such as voids, cracks, and burnout.

关键词: ultrasonic vibration-assisted grinding     perforated ultrasonic vibration platform     vibration characteristics     apparent elasticity method     grinding force     surface integrity    

Simplified analytical solution for free vibration characteristics of Hardfill dam

XIAO Wei, HE Yunlong, ZHANG Yanfeng

《结构与土木工程前沿(英文)》 2008年 第2卷 第3期   页码 219-225 doi: 10.1007/s11709-008-0037-3

摘要: Formulas for computing natural frequencies and modes of Hardfill dams are derived based on one-dimensional shear wedge theory, in which the influences of the upstream concrete face and hydrodynamic pressure of water on the dams’ natural frequencies and modes are discussed. Furthermore, the seismic responses of Hardfill dams are calculated using response spectrum method. An example is analyzed to compare the differences of natural frequencies and modes between shear wedge method and FEM. Then the applicability and accuracy of shear wedge method to analyze free vibration characteristics of Hardfill dams are proven.

关键词: upstream concrete     hydrodynamic pressure     vibration     one-dimensional     applicability    

Ultrasonic assisted EDM: Effect of the workpiece vibration in the machining characteristics of FW4 Welded

Mohammadreza SHABGARD, Hamed KAKOLVAND, Mirsadegh SEYEDZAVVAR, Ramin Mohammadpour SHOTORBANI

《机械工程前沿(英文)》 2011年 第6卷 第4期   页码 419-428 doi: 10.1007/s11465-011-0246-7

摘要:

This paper presents the results of experimental studies carried out to conduct a comprehensive investigation on the influence of ultrasonic vibration of workpiece on the characteristics of Electrical Discharge Machining (EDM) process of FW4 Welding Metal in comparison with the conventional EDM process. The studied process characteristics included the material removal rate (MRR), tool wear ratio (TWR), and surface roughness (Ra and Rmax) of the workpiece after the EDM and ultrasonic assisted EDM (US-EDM) processes. The experiments performed under the designed full factorial procedure and the considered EDM input parameters included pulse on-time and pulse current. The experimental results show that in short pulse on-times, material removal rate in the US-EDM process is approximately quadruple than that of the EDM process. On the contrary, in the long pulse on-times, ultrasonic vibration of work??piece leads to the reduction in the MRR. On the other hand, in short pulse on-times, the TWR in the US-EDM process is lower than that of in the EDM process, and this condition reverses with increase in the pulse on-time. Furthermore, the surface roughness of the workpiece machined by EDM process is slightly lower than that of applied to the US-EDM process.

关键词: electrical discharge machining (EDM)     material removal rate (MRR)     tool wear ratio (TWR)     surface roughness    

Dynamic characteristics of NC table with SVD

WANG Linhong, WU Bo, DU Runsheng, YANG Shuzi

《机械工程前沿(英文)》 2008年 第3卷 第4期   页码 385-391 doi: 10.1007/s11465-008-0052-z

摘要: This paper employs the SVD (singular value decomposition) method to study dynamic characteristics of a numerical control (NC) table. Acceleration signals of the NC table at three directions are tested; the singular spectrum of the signals is acquired with SVD; principal components of the signals are found out; dynamic characteristics of the signals and their contributing factors are studied by extracting dynamic characteristics of principal components; and signals and principal components are quantitatively analyzed by calculating signal energy. Results indicate that signal characteristics of the previous two principal components are apparent, based on which dynamic characteristics of chaotic signal can be extracted. Signal at the perpendicular direction of the table is significantly correlated with that at the horizontal motion direction, which indicates that they are excited from the same vibration source. However, signals perpendicular to each other in terms of the motion direction at the horizontal level are rarely correlated; the total signal energy is maximum at the motion direction, minimum at the horizontal non-motion direction, and medium at the perpendicular non-motion direction. Bending vibration of the lead screw at the perpendicular direction is far more violent than that at the horizontal direction.

关键词: Acceleration     vibration source     chaotic     energy     dynamic    

Prediction of characteristic blast-induced vibration frequency during underground excavation by using

Tae Un PAK; Guk Rae JO; Un Chol HAN

《结构与土木工程前沿(英文)》 2022年 第16卷 第8期   页码 1029-1039 doi: 10.1007/s11709-022-0861-x

摘要: Blast-induced vibration produces a very complex signal, and it is very important to work out environmental problems induced by blasting. In this study, blasting vibration signals were measured during underground excavation in carbonaceous shale by using vibration pickup CB-30 and FFT analyzer AD-3523. Then, wavelet analysis on the measured results was carried out to identify frequency bands reflecting changes of blasting vibration parameters such as vibration velocity and energy in different frequency bands. Frequency characteristics are then discussed in view of blast source distance and charge weight per delay. From analysis of results, it can be found that peak velocity and energy of blasting vibration in frequency band of 62.5–125 Hz were larger than ones in other bands, indicating the similarity to characteristics in the distribution band (31–130 Hz) of main vibration frequency. Most frequency bands were affected by blasting source distance, and the frequency band of 0–62.5 Hz reflected the change of charge weight per delay. By presenting a simplified method to predict main vibration frequency, this research may provide significant reference for future blasting engineering.

关键词: wavelet analysis     blast-induced vibration     frequency characteristics     underground excavation    

Dynamic analysis of a rig shafting vibration based on finite element

Van Thanh NGO, Danmei XIE, Yangheng XIONG, Hengliang ZHANG, Yi YANG

《机械工程前沿(英文)》 2013年 第8卷 第3期   页码 244-251 doi: 10.1007/s11465-013-0264-8

摘要:

In recently, finite elements method (FEM) has been used most popular for analysis of stress, vibration, heat flow and many other phenomena. Taking a rig shafting as an example, this paper studies the lateral vibration of the rig shafting with multi-degree-of-freedom by using FEM. The FEM model is created and the eigenvalues and eigenvectors are calculated and analyzed to find natural frequencies, critical speeds, mode shapes and unbalance responses. Then critical and mode shapes are determined. Finally, responses of unbalance force are analyzed in case of undamped and damped system, and peaks of response are compared.

关键词: Finite element method (FEM)     lateral vibration     rig shafting     rotor-bearing system     dynamic characteristics    

Computation and investigation of mode characteristics in nonlinear system with tuned/mistuned contact

Houxin SHE, Chaofeng LI, Qiansheng TANG, Hui MA, Bangchun WEN

《机械工程前沿(英文)》 2020年 第15卷 第1期   页码 133-150 doi: 10.1007/s11465-019-0557-7

摘要: This study derived a novel computation algorithm for a mechanical system with multiple friction contact interfaces that is well-suited to the investigation of nonlinear mode characteristic of a coupling system. The procedure uses the incremental harmonic balance method to obtain the nonlinear parameters of the contact interface. Thereafter, the computed nonlinear parameters are applied to rebuild the matrices of the coupling system, which can be easily solved to calculate the nonlinear mode characteristics by standard iterative solvers. Lastly, the derived method is applied to a cycle symmetry system, which represents a shaft–disk–blade system subjected to dry friction. Moreover, this study analyzed the effects of the tuned and mistuned contact features on the nonlinear mode characteristics. Numerical results prove that the proposed method is particularly suitable for the study of nonlinear characteristics in such nonlinear systems.

关键词: coupling vibration     nonlinear mode     original algorithm     contact interface    

Mesh relationship modeling and dynamic characteristic analysis of external spur gears with gear wear

《机械工程前沿(英文)》 2022年 第17卷 第1期   页码 9-9 doi: 10.1007/s11465-021-0665-z

摘要: Gear wear is one of the most common gear failures, which changes the mesh relationship of normal gear. A new mesh relationship caused by gear wear affects meshing excitations, such as mesh stiffness and transmission error, and further increases vibration and noise level. This paper aims to establish the model of mesh relationship and reveal the vibration characteristics of external spur gears with gear wear. A geometric model for a new mesh relationship with gear wear is proposed, which is utilized to evaluate the influence of gear wear on mesh stiffness and unloaded static transmission error (USTE). Based on the mesh stiffness and USTE considering gear wear, a gear dynamic model is established, and the vibration characteristics of gear wear are numerically studied. Comparison with the experimental results verifies the proposed dynamic model based on the new mesh relationship. The numerical and experimental results indicate that gear wear does not change the structure of the spectrum, but it alters the amplitude of the meshing frequencies and their sidebands. Several condition indicators, such as root-mean-square, kurtosis, and first-order meshing frequency amplitude, can be regarded as important bases for judging gear wear state.

关键词: gear wear     mesh relationship     mesh stiffness     transmission error     vibration characteristics    

移动荷载作用下三塔悬索桥的强迫振动研究

冯兆祥,陈亮,缪长青

《中国工程科学》 2012年 第14卷 第5期   页码 80-84

摘要:

针对泰州大桥开展结构动力特性计算,分析了不同移动速度以及不同移动荷载大小对于三塔两跨悬索桥结构动力响应的影响。结果表明,三塔两跨悬索桥的一阶竖弯振动基频约为0.08 Hz,远低于载重汽车的固有频率,不会形成共振条件。简单的移动荷载作用下三塔两跨连续支承悬索桥的内力、位移响应与同等静力荷载作用效果比较接近。移动荷载的质量越大、速度越大,结构的内力、位移响应就越大,并与车重呈近似正比例关系。结构内力、位移的荷载放大系数不随移动荷载质量的大小而改变。

关键词: 动力特性     强迫振动     响应     荷载放大系数    

城市立交桥爆破拆除塌落振动的测量与分析

胡进军,杨永强,管英珺

《中国工程科学》 2014年 第16卷 第11期   页码 90-95

摘要:

为分析城市立交桥爆破拆除时结构构件塌落造成的地面振动的特征,介绍了某城市典型立交桥的爆破拆除中地面振动的测量方法,并基于观测点实测数据对地面振动的加速度峰值、频率和持时进行了分析。分析结果表明:塌落造成的竖向地振动幅值比水平分量大,但是其随着距离增大迅速衰减,因此在距离塌落处较近的区域应该考虑竖向地振动的影响;桥梁结构多次连续塌落会导致出现地面振动的叠加,采取减隔振措施可以降低加速度峰值,同时也会使得加速度的峰值频率降低、持时增加;爆破和塌落振动并未对保留桥梁结构造成损伤,说明爆破拆除是一种安全、高效的拆除方法。

关键词: 爆破拆除     城市立交桥     塌落     地面振动     加速度    

Dynamic modeling and coupling characteristics of rotating inclined beams with twisted-shape sections

Jin ZENG, Chenguang ZHAO, Hui MA, Bangchun WEN

《机械工程前沿(英文)》 2020年 第15卷 第3期   页码 374-389 doi: 10.1007/s11465-019-0580-8

摘要: In the existing literature, most studies investigated the free vibrations of a rotating pre-twisted cantilever beam; however, few considered the effect of the elastic-support boundary and the quantification of modal coupling degree among different vibration directions. In addition, Coriolis, spin softening, and centrifugal stiffening effects are not fully included in the derived equations of motion of a rotating beam in most literature, especially the centrifugal stiffening effect in torsional direction. Considering these deficiencies, this study established a coupled flapwise–chordwise–axial–torsional dynamic model of a rotating double-tapered, pre-twisted, and inclined Timoshenko beam with elastic supports based on the semi-analytic method. Then, the proposed model was verified with experiments and ANSYS models using Beam188 and Shell181 elements. Finally, the effects of setting and pre-twisted angles on the degree of coupling among flapwise, chordwise, and torsional directions were quantified via modal strain energy ratios. Results showed that 1) the appearance of torsional vibration originates from the combined effect of flapwise–torsional and chordwise–torsional couplings dependent on the Coriolis effect, and that 2) the flapwise–chordwise coupling caused by the pure pre-twisted angle is stronger than that caused by the pure setting angle.

关键词: elastic-support boundary     pre-twisted beam     semi-analytic method     modal strain energy ratio     torsional vibration    

Recent development of vibration utilization engineering

WEN Bangchun

《机械工程前沿(英文)》 2008年 第3卷 第1期   页码 1-9 doi: 10.1007/s11465-008-0017-2

摘要: The utilization of vibration and wave, which was developed during the latter half of the 20th century, is one of the most valueable technology applications and has been rapidly developing recently . Because the technique is closely associated with industry and agriculture, it can create huge social and economical benefits and provide excellent services for society. Thus, due to its necessity in industry and daily life, extensive research has been devoted to vibration utillization engineering. In this paper, vibration utilization is classified into linear or non-linear vibrations, waves, and electric-magnetic oscillations. Their phenomena, patterns, and applications in nature and society are introduced. Some research results about vibration utilization engineering are described.

关键词: utilization engineering     non-linear     vibration     vibration utillization     utillization engineering    

Application of python-based Abaqus preprocess and postprocess technique in analysis of gearbox vibration

Guilian YI, Yunkang SUI, Jiazheng DU

《机械工程前沿(英文)》 2011年 第6卷 第2期   页码 229-234 doi: 10.1007/s11465-011-0128-z

摘要:

To reduce vibration and noise, a damping layer and constraint layer are usually pasted on the inner surface of a gearbox thin shell, and their thicknesses are the main parameters in the vibration and noise reduction design. The normal acceleration of the point on the gearbox surface is the main index that can reflect the vibration and noise of that point, and the normal accelerations of different points can reflect the degree of the vibration and noise of the whole structure. The K-S function is adopted to process many points’ normal accelerations as the comprehensive index of the vibration characteristics of the whole structure, and the vibration acceleration level is adopted to measure the degree of the vibration and noise. Secondary development of the Abaqus preprocess and postprocess on the basis of the Python scripting programming automatically modifies the model parameters, submits the job, and restarts the analysis totally, which avoids the tedious work of returning to the Abaqus/CAE for modifying and resubmitting and improves the speed of the preprocess and postprocess and the computational efficiency.

关键词: Abaqus secondary development     Python language     vibration and noise reduction     K-S function     vibration acceleration level    

Similitude design for the vibration problems of plates and shells: A review

Yunpeng ZHU, You WANG, Zhong LUO, Qingkai HAN, Deyou WANG

《机械工程前沿(英文)》 2017年 第12卷 第2期   页码 253-264 doi: 10.1007/s11465-017-0418-1

摘要:

Similitude design plays a vital role in the analysis of vibration and shock problems encountered in large engineering equipment. Similitude design, including dimensional analysis and governing equation method, is founded on the dynamic similitude theory. This study reviews the application of similitude design methods in engineering practice and summarizes the major achievements of the dynamic similitude theory in structural vibration and shock problems in different fields, including marine structures, civil engineering structures, and large power equipment. This study also reviews the dynamic similitude design methods for thin-walled and composite material plates and shells, including the most recent work published by the authors. Structure sensitivity analysis is used to evaluate the scaling factors to attain accurate distorted scaling laws. Finally, this study discusses the existing problems and the potential of the dynamic similitude theory for the analysis of vibration and shock problems of structures.

关键词: review     dynamic     similitude     vibration     model test    

Multi-harmonic forced vibration and resonance of simple beams to moving vehicles

《结构与土木工程前沿(英文)》   页码 981-993 doi: 10.1007/s11709-023-0979-5

摘要: This study modeled the moving-vehicle-induced forcing excitation on a single-span prismatic bridge as a multiple frequency-multiplication harmonic load on the modal coordinates of a linear elastic simple Euler–Bernoulli beam, and investigated the forced modal oscillation and resonance behavior of this type of dynamic system. The forced modal responses consist of multiple frequency-multiplication steady-state harmonics and one damped mono-frequency complementary harmonic. The analysis revealed that a moving load induces high-harmonic forced resonance amplification when the moving speed is low. To verify the occurrence of high-harmonic forced resonance, numerical tests were conducted on single-span simple beams based on structural modeling using the finite element method (FEM) and a moving sprung-mass oscillator vehicle model. The forced resonance amplification characteristics of the fundamental mode for beam response estimation are presented with consideration to different end restraint conditions. The results reveal that the high-harmonic forced resonance may be significant for the investigated beams subjected to vehicle loads moving at specific low speeds. For the investigated single-span simple beams, the moving vehicle carriage heaving oscillation modulates the beam modal frequency, but does not induce notable variation of the modal oscillation harmonic structure for the cases that vehicle of small mass moves in low speed.

关键词: forced vibration     linear Euler beam     moving load     harmonic structure     frequency modulation     end restraints    

标题 作者 时间 类型 操作

Vibration characteristics and machining performance of a novel perforated ultrasonic vibration platform

期刊论文

Simplified analytical solution for free vibration characteristics of Hardfill dam

XIAO Wei, HE Yunlong, ZHANG Yanfeng

期刊论文

Ultrasonic assisted EDM: Effect of the workpiece vibration in the machining characteristics of FW4 Welded

Mohammadreza SHABGARD, Hamed KAKOLVAND, Mirsadegh SEYEDZAVVAR, Ramin Mohammadpour SHOTORBANI

期刊论文

Dynamic characteristics of NC table with SVD

WANG Linhong, WU Bo, DU Runsheng, YANG Shuzi

期刊论文

Prediction of characteristic blast-induced vibration frequency during underground excavation by using

Tae Un PAK; Guk Rae JO; Un Chol HAN

期刊论文

Dynamic analysis of a rig shafting vibration based on finite element

Van Thanh NGO, Danmei XIE, Yangheng XIONG, Hengliang ZHANG, Yi YANG

期刊论文

Computation and investigation of mode characteristics in nonlinear system with tuned/mistuned contact

Houxin SHE, Chaofeng LI, Qiansheng TANG, Hui MA, Bangchun WEN

期刊论文

Mesh relationship modeling and dynamic characteristic analysis of external spur gears with gear wear

期刊论文

移动荷载作用下三塔悬索桥的强迫振动研究

冯兆祥,陈亮,缪长青

期刊论文

城市立交桥爆破拆除塌落振动的测量与分析

胡进军,杨永强,管英珺

期刊论文

Dynamic modeling and coupling characteristics of rotating inclined beams with twisted-shape sections

Jin ZENG, Chenguang ZHAO, Hui MA, Bangchun WEN

期刊论文

Recent development of vibration utilization engineering

WEN Bangchun

期刊论文

Application of python-based Abaqus preprocess and postprocess technique in analysis of gearbox vibration

Guilian YI, Yunkang SUI, Jiazheng DU

期刊论文

Similitude design for the vibration problems of plates and shells: A review

Yunpeng ZHU, You WANG, Zhong LUO, Qingkai HAN, Deyou WANG

期刊论文

Multi-harmonic forced vibration and resonance of simple beams to moving vehicles

期刊论文